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Non trivial overlap distributions at zero temperature
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Abstract. We explore the consequences of Replica Symmetry Breaking at zero temperature. We introduce a
repulsive coupling between a system and its unperturbed ground state. In the Replica Symmetry Breaking
scenario a finite coupling induces a non trivial overlap probability distribution among the unperturbed
ground state and the one in presence of the coupling. We find a closed formula for this probability for
arbitrary ultrametric trees, in terms of the parameters defining the tree. The same probability is computed
in numerical simulations of a simple model with many ground states, but no ultrametricity: polymers in
random media in 1+1 dimension. This gives us an idea of what violation of our formula can be expected
in cases when ultrametricity does not hold.

PACS. 05.20.-y Classical statistical mechanics – 05.40.-a Fluctuation phenomena, random processes, noise,
and Brownian motion – 75.10.Nr Spin-glass and other random models

1 Introduction

In recent times there has been a wide interest in the be-
havior spin glasses with Gaussian couplings at zero tem-
perature.

Some of the reasons for this interest are the following:

– The energies are continuous variables and the ground
state is unique. It is also natural to suppose (although
it is far from being proved) that the limits T → 0 and
N → ∞ do commute and therefore the shape of the
energy landscape is similar to that of the free energy
landscape at non-zero temperature (for a discussion of
this point see [1]).

– Working at zero temperature avoids completely the
possibility that the temperature used is too near to
the critical point.

– Technical progresses has been done in the algorithm
for finding the ground state [2,4–7] and it is now pos-
sible to studies three dimensional systems up to 143

spins [7].

In this framework it has been suggested that a possible
test of the applicability of the Replica Symmetry Breaking
(RSB) scenario is the study of the overlap of the ground
state of two systems whose total Hamiltonian differs by a
quantity of order 1 [3,5].

Let us consider a simple case. We have a first system
with Hamiltonian H0(σ) and its ground state is given by
τi. We now consider a second system whose Hamiltonian is

H1(σ) = H0(σ) + εHτ (σ). (1)

a e-mail: franz@ictp.trieste.it

Three quite simple choices of Hτ (σ) are:

Hτ (σ) = q(σ, τ ), Hτ (σ) = q2(σ, τ ),
Hτ (σ) = ql(σ, τ ), (2)

where the overlap q and the link overlap ql are given by

q(σ, τ ) = N−1
∑
i

σiτi,

ql(σ, τ ) = N−1
l

∑
〈i,k〉

σiτiσkτk, (3)

where the sum is done over all the nearest neighbor pairs
(i, k) in a short range model or over all the pairs in the SK
model (Nl being the total number of pairs in this sum).
The third possibility has been actually used by [3].

In presence of quenched disorder, the the value of the
overlap among the ground states ofH0 andH1 can be sam-
ple dependent. This observation can be used as starting
point for investigating possible RSB in the three dimen-
sional Edwards-Anderson model. The question addressed
in this paper, is the computation of the probability dis-
tribution, induced by the random couplings, of q or of ql
between the two ground states, in the hierarchical RSB
scenario.

Obviously the choice Hq(σ) = q is interesting only in
presence of a magnetic field which breaks the symmetry
σ(i)→ −σ(i), otherwise we would get that σ(i) = −τ (i)
for positive non zero ε and q = −1. The second choice is
more interesting at zero magnetic field, but it is slightly
harder to implement numerically, because of its non local
nature. The third choice is however equivalent to the first
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one in the SK model, where is known that ql = q2 apart
from corrections that vanishes when the number of spins
goes to infinity. In short range models, it is possible (as
suggested by the principle of replica equivalence [8]) that
with probability one when the volume goes to infinity
ql = f(q2), where f is a function that can be determined
numerically and which should be not too far from

f(q2) = A+ (1−A)q2. (4)

It is evident that for finite ε the perturbation is of order 1
and it quite interesting that if replica symmetry is broken
the function P (q) is non trivial at ε 6= 0. Let us define as
Egs(0) + ∆(q) the energy of the first excited state of the
Hamiltonian H0 with an overlap q with the ground state.
The ground state of the Hamiltonian H1 is

Egs(ε) = Egs(0) + min
0≤q≤1

{∆(q) + εg(q)} (5)

where g(q) = q, q2, ql. The main achievement of this paper
will be the computation in Sections 2 and 3 of the joint
probability distribution of ∆ and q for which the minimum
is attained, for arbitrary RSB trees. In Section 4 we will
give some example in mean field models, while in Section 5
we show the result of a numerical computation for directed
polymers in random media in 1+1 dimension.

2 Replica symmetry breaking

The computation presented in this note could be done in
two different ways:

– Using the replica formalism [9] to compute the parti-
tion function of the perturbed Hamiltonian H1.

– Exploiting directly the information coming from
replica symmetry breaking on the probability distri-
bution of the lowest lying states and doing a purely
probabilistic computation.

The first alternative leads to some apparently messy com-
binatorial analysis so that we have decided to follow the
second alternative. In this case the computation is physi-
cally instructive.

In this section we will recall, without proof, some
known results about replica symmetry breaking and also
find some new consequences of those results. Let us as-
sume that replica symmetry is broken in the system we
consider and its breaking is characterized by a function
x(q, T ) such that in the low temperature limit

x(q, T ) = Ty(q) +O(T 2), (6)

where the function y(q) may be singular at q = 1 (in the
SK model it diverges as (1− q)−1/2 near q = 1) [10].

The space of low lying configurations is organized in a
rather complex way.

2.1 One step replica symmetry breaking

In this case only two values of the overlap are allowed (q0
and 1), i.e. all different minima have a mutual overlap
equal to q0. If we call R a reference total energy, which
depends on the choice of the systems, i.e. on the variables
J , the probability that a configuration lies in the interval
(E,E + dE) is given by

ν0(E|R) ≡ exp(y0(E −R)). (7)

We notice that configurations which differs by a number
of spin flips which remains finite when the volume goes to
infinity are identified.

This well known results has the consequence that the
probability distribution of the ground state energy E0 is
given by the Gumbel law

µ0(E0|R) = exp(y0(E0 −R)) exp
(
−A0 exp(y0(E0 −R))

)
,

(8)

withA0 = 1/y0. This formula is easily understood noticing
that the probability that there are no configurations for
E′ < E is given by

exp

(
−
∫ E

−∞
dE′ exp(y0(E′ −R))

)
=

exp
(
− y−1

0 exp(y0(E −R))
)
. (9)

In the same way we obtain that the probability of having
a ground state at E0 and the first excited configuration at
E1 is given by:

P (E0, E1|R) = ν0(E0|R)µ0(E1|R),
= exp(y0(E0 −R)) exp(y0(E1 −R))

× exp
(
− y−1

0 exp(y0(E1 −R))
)
.

Finally, the probability distribution of the difference ∆0 =
E1 −E0, integrated over E0 and E1, is given by

P (∆0) = y0 exp(−y0∆0), (10)

for positive ∆0, the probability being obviously zero for
negative ∆0.

2.2 Many level replica symmetry breaking

Let us in this section generalize the computation for an
arbitrary RSB tree (see Fig. 1). As customary, we will first
consider a tree with k levels and at the end we will gen-
eralize the result to the continuous branching limit. The
construction of the tree has been described many times,
and we only repeat it briefly to fix the notation. At each
node of the tree at the level l it is assigned an energy
El, which is chosen in such a way that the number of
nodes with energy in the interval (El, El + dEl) branch-
ing from a node with energy El−1 is a Poisson variable
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Fig. 1. A three level tree, expliciting the notation we use in
the text.

with average equal to exp(yl(El−El−1))dEl. We will con-
sider the case in which for all l, yl+1 > yl, which will be
a necessary condition of convergence of the integrals that
appear in the computation. The root energy E0 = R is the
reference energy of the previous section. We call l-clusters,
the sets of leaves (terminal nodes of the tree) which have
the closest common ancestor at the lth level.

Let us define for any l = k − 1, ..., 1 the first l-excited
state, as the first excited state which is in the same
l-cluster as the ground state, but in a different l + 1-
cluster, and denote its energy Egs + ∆l. In this section
we compute the joint probability distribution of all the
l-gaps ∆l. We will get this quantity by first computing
Pk(Egs, Egs + ∆k, ..., Egs + ∆1|E0) and then integrating
over Egs. In that computation we make use of the follow-
ing properties:

1. The probability of a ground state µl(E|El) of an
l-cluster (we call it an l ground state) is given by

µl(E|El) = exp
(
yl+1(E −El) +Aleyl+1(E−El)

)
(11)

where the Al are a positive constants whose value could
be easily computed, but we will not need. For l = k
the formula was derived in the previous section. Let us
now proceed by induction supposing that the formula
holds for l + 1 and show that it holds for l. Under
the induction hypothesis, we find that the number of
l + 1-ground states with energy E in an l cluster is
given by

νl+1(E|El)dEl =
∫

dEl+1eyl+1(El+1−El)µl+1(E|El+1)

= const.× eyl+1(E−El)dEl (12)

from which we immediately find that the distribution
of the l ground state is given by (11) exploiting the
reasonings of the previous sub-section.

2. The joint probability

Pk(Egs, Egs +∆k, ..., Egs +∆1|Ek, Ek−1, ..., E0)
(13)

can be written as:

Pk(Egs, Egs +∆k, ..., Egs +∆1|Ek−1, ..., E0) =
νk(Egs|Ek−1)µk(Egs +∆k|Ek−1)µk−1

× (Egs +∆k−1|Ek−2)× ...× µ1(Egs +∆1|E0) (14)

from which we get:

Pk(Egs, Egs +∆k, ..., Egs +∆1|E0) =∫
dEk−1...dE1 νk(Egs|Ek−1)µk(Egs +∆k|Ek−1)

× eyk−1(Ek−1−Ek−2)µk−1(Egs +∆k−2|Ek−2)

× eyk−2(Ek−2−Ek−3) × ...× µ2(Egs +∆2|E1)

× ey1(E1−E0)µ1(Egs +∆1|E0). (15)

3. A detailed computation shows that∫
dEk−1 νk(Egs|Ek−1)µk(Egs +∆k|Ek−1)

× eyk−1(Ek−1−Ek−2) =

(yk − yk−1)e−(yk−yk−1)∆kνk−1(Egs|Ek−2). (16)

This allows to integrate all the El (l = k − 1, ..., 1)
telescopically, and obtain

Pk(Egs, Egs +∆k, ..., Egs +∆1|E0) =
k∏
i=2

(
(yi − yi−1)e−(yi−yi−1)∆i

)
× ν1(Egs|E0)µ1(Egs +∆1|E0). (17)

4. We can finally integrate Egs as in the previous section
and get that the gaps’ probability distribution is:

P (∆k, ...,∆1) =
k∏
i=1

(
(yi − yi−1)e−(yi−yi−1)∆i

)
(18)

having defined y0 = 0.

We can now consider the continuum branching limit,
in which the levels can be indexed by the value of q, or
by any monotonically increasing function of q. yi → y(q),
yi−yi−1 → y′(q) dq where the previous formula reduces to

P ({∆(q)}) = exp
(
−
∫ 1

0

dqy′(q)∆(q)
) 1∏
q=0

y′(q) dq,

(19)

where, if y1 → y(0) 6= 0, we make the convention that
y′(0) = y(0)δ(q).
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3 The overlap probability distribution

We are finally in the position to compute the joint distri-
bution of the gap and of the overlap. For a given sample,
as we said, the difference among the ground state energy
of the Hamiltonians H1 and H0 is given by the

Egs(ε)−Egs(0) = min
0≤q≤1

∆(q) + εg(q). (20)

Noticing that the indexing of the tree could be done by the
function g(q) itself, we can concentrate here to case g(q) =
|q|, and consider only positive overlaps. All the other cases
can be obtained by this one via a simple change of variable.
Let us call ∆ and q the arguments of the minimum in (20).
Notice that if we want q 6= 1, ∆ has to verify the inequality
∆ ≤ ε(1− q), which expresses the fact that ∆(1) is always
equal to zero.

We get the probability P (∆, q) integrating in for-
mula (19) all the ∆(q′) (q′ 6= q) with the condition
∆(q′) ≥ min{0,∆ + ε(q − q′)}. If q′ > ∆/ε + q the in-
tegration over ∆(q′) will contribute with a one, while, in
the opposite case q′ < ∆/ε + q it contributes with the
factor exp(−εdq′ y′(q′)(∆/ε+ q − q′)). We finally get:

P (∆, q) = θ(1− q −∆/ε)y′(q)

× exp

(
−ε
∫ q+∆/ε

0

dq′ (y(q′)− y(0))

)
+ δ(∆)δ(q − 1) exp(−εχ), (21)

where we defined χ = y(0) +
∫ 1

0
dq y(q). The factor y′(q)

that multiply the exponential comes from the only ∆
which has remained unintegrated.

Let us notice that (apart the term with δ(∆)), the
formula depends on the gap ∆ only in the combination
∆/ε + q which represent the total excess energy of the
coupled system with respect to the ground state divided
by ε.

Integrating over ∆ we get, for the overlap probability

P (q) = δ(q − 1) exp(−εχ) + εy′(q)

×
∫ 1

q

dq′ exp

(
−ε
∫ q′

0

dq′′(y(q′′)− y(0))

)
. (22)

It is also interesting to study the probability distribution
of w = ∆/ε+ q. Integrating over ∆ and q for fixed w with
the condition 0 ≤ q ≤ w we find the remarkable formula:

P (w) = θ(1− w)ε(y(w) − y(0))

× exp
(
−ε
∫ w

0

dq (y(q)− y(0))
)

+ δ(w − 1) exp(−εχ).

(23)

Had we chosen a more general function g(q) this formula
would look exactly the same, with the definition w =
∆/ε+ g(q). The anti-derivative of P (w) has a very simple
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Fig. 2. The function Y (w) in the spherical model with p = 5
a = 0.3. In the inset, the function Q(w) for ε = 2k, from top
to bottom k = 4, 7, 10, 13, 16.

dependence on y and ε. If we define Q(w) =
∫ 1

w
dw′ P (w′)

we find:

Q(w) = exp
(
−ε
∫ w

0

dq (y(q)− y(0))
)

(24)

which is particularly well suited for the extraction of
the function y(q) from numerical simulations. Notice
that equation (24) implies that Y (w) = ε−1ln(Q(w)) is
ε-independent, which is a non-trivial result.

4 Examples

In this section we show how our formula looks in some spe-
cial cases. The first example we use is the one of spherical
models. These models are defined by a random Gaussian
Hamiltonian H(σ) (σ = {σ1, ..., σN}), which have corre-
lation function

H(σ)H(τ ) = Nf(q(σ, τ )) (25)

and the spins are subject to the spherical constraint∑
i σ

2
i = N . In these models, the function y(q) is tem-

perature independent and equal to [11]

y(q) = 1/2f ′′′(q)/(f ′′(q)3/2). (26)

This last equation makes sense only if the resulting func-
tion y(q) is an increasing function of q. This in particular
happens for f(q) = 1/2(q2 + aqp) if p ≥ 4 and a small
enough, where we find

y(q) =
a√
2

1
(p− 3)!

qp−3(
2 + a

(p−2)!q
p−2
)3/2

, (27)

while

Y (w) ≡
∫ w

0

dqy(q) = 1− 1√
1 + aqp−2

2(p−2)!

· (28)

In Figure 2 we show the function Y (w) and the function
Q(w) for various values of ε in the case p = 5, a = 0.3.
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Fig. 3. The function P (q) for the same model and parameters
of Figure 2.

In Figure 3 we show the function P (q) for the same values
of the parameters.

In the case of the SK model the function y(q) at low
temperature, has been estimated in [10] using the so-called
PaT approximation, and displays a square root divergence
at q = 1, while starting linearly at q = 0 (a best fit of the
form y(q) = aq+bq2√

1−q gives a = 1.309, b = −0.695).
Using that estimate we immediately compute the func-

tion Q(w) which is plotted in Figure 4 for various values
of ε.

It is interesting to study the limit ε → ∞ of our for-
mula. Let us suppose that y behaves as y(q) = aqα + ....
for α > 1 for low q. In this case P (q) will be dominated
by the behavior of y close to q = 0. We can introduce a
cut-off Λ such that Λ→ 0 and Λ1+αε→∞.

P (q) ' εαqα−1

∫ Λ

q

exp
(
− ε

α+ 1
qα+1

)
(29)

which, rescaling the integration variable and sending the
cut-off to zero becomes:

P (q) =
1
q

(
εaqα+1

1 + α

) α
1+α

Γ (
1

1 + α
,
εa

α+ 1
qα+1) (30)

where the incomplete gamma function is

Γ (n, x) =
∫ ∞
x

dy yn−1 e−y. (31)

This case is relevant in the spherical models where y(q) ∼
a

4(p−3)!q
p−3 and for the SK model where y(q) ∼ aq.

5 Directed polymers in 1+1 dimension

The natural play ground of the exposed theory are finite
dimensional spin glasses. Our analysis predicts a very par-
ticular dependence of the probability of q and w on ε.
Formulae (22, 24) has been derived assuming that the low
lying states verify ultrametricity. It is therefore interest-
ing to understand what kind of violations of the scaling
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Fig. 4. The function Y (w) for the SK model in the PaT ap-
proximation. In the inset, the function Q(w) computed by (24)
for ε = 0.01×2k with (from top to bottom) k = 3, 5, 7, 9, 11, 13.

forms (22, 24) can be expected when the ground states
structure is nontrivial, but ultrametricity does not hold.

In this paper we study numerically the simple case of
directed polymers in random media in 1+1 dimension. The
model we use is defined on the square lattice, where the
polymer can perform a random walk starting from the ori-
gin. On each site of the lattice is defined a passage energy
cost which is a Gaussian variable with unit variance, and
independent of all the other energies. The properties of
this sort of model have been studied extensively [12], and
it is well known that while the low temperature thermody-
namics is dominated by a single ground state, there exist
many “pure states” (i.e. metastable states separated by
growing barriers) with typical energy gap with the ground
state scaling as L1/3 (for a polymer of total length L).
The overlap for two polymers of length L with a common
source in the origin is often defined as the fraction of the
monomers passing in the same sites of the lattice in the
two polymers. Given the previously mentioned scaling of
the energy gap it is natural that the scaling of the cou-
pling in order to have non trivial and L-independent P (q)
and Q(w) as defined in the previous section is

ε = ηL1/3. (32)

If in this problem we had to suppose the validity of the
formulae (22, 24) we would conclude that L-independent
P (q) and Q(w) could only be obtained if the function y(q)
for samples of length L depends on L and scales as L−1/3.

As we stressed, ultrametricity does not hold in this
model. Although we did not make a systematic study, we
can easily show the lack of ultrametricity generalizing the
coupling procedure to a third “replica”, which has a re-
pulsion both with the unperturbed ground state, and with
the one obtained with the coupling. For simplicity, we look
at the case in which all couplings are equal. In Figure 5 we
show the overlap between the second and the third replica
as a function of the overlap between the first and the third,
fixing the overlap between the first and the second to 0.8,
and we see no sign of ultrametricity.
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Fig. 5. We plot here q23 as a function of q13 for q12 = 0.8
for 1151 different samples with L = 200 and ε = 0.01. It is
apparent that ultrametricity is violated; if it was obeyed the
points would stick to the line q23 = q13 for q13 < 0.8, to the line
q23 = 0.8 for q13 > 0.8, and to the line q13 = 0.8 for q23 > 0.8.
The lines q23 = q13 ± 0.2 represent the bounds imposed by the
triangular inequality. Data obtained for L = 400 show that
there is no trend towards ultrametricity as L is increased.
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Fig. 6. The cumulative probability Q(w) and 5 different values
of η = 0.1× 1.4n, from top to bottom n = 1, 5, 10, 15, 20 and
L = 100 (dotted line) L = 200 (dashed line) L = 400 (full line).
The data are obtained on sets of 10 000 different samples. We
see that the scaling with L is reasonably obeyed.

In Figure 6 we show the function Q(w) for various
values of L and ε of the form (32). We see that choosing
ε ∼ L1/3, the expected independence of Q(w) on L is
reasonably obeyed for values of L ' 200.

A close inspection to Q(1) however, which represents
the probability of q = 1 reveals that this quantity behaves
as Q(1) = exp(−ηχL2/3), with χ = 0.85± 0.02, and that
the scaling is violated in proximity of w = 1.

We next try to scale the data with ε according to the
formula (24). In Figure 7 we see that the works quite well
for small values of ε, while we show in Figure 8 that there
are important violations for large values of ε.
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Fig. 7. The cumulative probability −1/εLog(Q(w)) and 7 dif-
ferent values of η = 0.1× 1.4n, n = 1, ..., 7 and L = 400. The
data are obtained on sets of 10 000 different samples. We see
that for these low values of ε the scaling is reasonably obeyed.
In the inset we plot Q(w) for the same values of the parameters.
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Fig. 8. The cumulative probability −ε−1ln(Q(w)) and 5 dif-
ferent values of η = 0.1× 1.4n, n = 15, ...20 and L = 400. The
data are obtained on sets of 10 000 different samples. In the
inset the function Q(w). For these values of ε the scaling form
of the function Q(w) is violated.

6 Conclusions

Monte-Carlo simulations of finite dimensional spin glasses,
show a behavior in agreement with RSB [13]. However, the
use of Monte-Carlo has been criticized on the ground that
one can only equilibrate the system close to the critical
point, where finite size effects are large and could spoil
the conclusions about ergodicity breaking in the thermo-
dynamic limit [14]. It is important therefore to find con-
sequences of RSB at zero temperature. In this paper we
have devised some of them.

We have found that a universal formula holds for the
probability of the overlap between the uncoupled ground
state and the coupled one. The investigation of the va-
lidity of that formula in three dimensional systems is not
beyond reach with the present technology, and will furnish
an important test of the nature of the spin-glass phase of
three dimensional systems.
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Two main ingredients are involved in the calculation:
the exponential distribution of the states [15] and their ul-
trametric organization [16]. This implies that the tree of
states is described by a single function y(q). The function
y(q) may in principle depend on N . Mean field theory pre-
dicts that y(q) remains finite in the thermodynamic limit
implying that the energy differences between pure states
remain finite in the thermodynamic limit. However, one
could envisage systems where both exponential distribu-
tion and ultrametricity are valid, but the typical energy
differences scale as Lθ. In this case, one still have a func-
tion y(q) which scales as L−θ and in order to measure
a nontrivial overlap distribution one needs a coupling of
order Lθ. The numerical study of the overlap and gap dis-
tribution, and the comparison with the formulae found
in this paper will give important information about the
organization of the states in short range models.

We thank Enzo Marinari, Matteo Palassini and Peter Young
for important discussions.
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16. M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, M.A.
Virasoro, J. Phys. France 45, 843 (1985).


